Emergence of world-stock-market network
نویسندگان
چکیده
In the age of globalization, it is natural that the stock market of each country is not independent form the other markets. In this case, collective behavior could be emerged form their dependency together. This article studies the collective behavior of a set of forty influential markets in the world economy with the aim of exploring a global financial structure that could be called world-stock-market network. Towards this end, we analyze the cross-correlation matrix of the indices of these forty markets using Random Matrix Theory (RMT). We find the degree of collective behavior among the markets and the share of each market in their structural formation. This finding together with the results obtained from the same calculation on four stock markets reinforce the idea of a world financial market. Finally, we draw the dendrogram of the cross-correlation matrix to make communities in this abstract global market visible. The dendrogram, drawn by at least thirty percent of correlation, shows that the world financial market comprises three communities each of which includes stock markets with geographical proximity.
منابع مشابه
Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملStock Price Forecasting
The especial importance of capital market in countries is undeniable in economic development via effective capital conduct and optimum resources allocation. Investment in capital market requires decision making in new stock exchanges, and accessing information in the case of future status of capital market. Undoubtedly, nowadays most part of capital is exchanged via stock exchange all around ...
متن کاملA Stock Market Filtering Model Based on Minimum Spanning Tree in Financial Networks
There have been several efforts in the literature to extract as much information as possible from the financial networks. Most of the research has been concerned about the hierarchical structures, clustering, topology and also the behavior of the market network; but not a notable work on the network filtration exists. This paper proposes a stock market filtering model using the correlation - ba...
متن کاملSectoral Growth and Centrality in Stock Market in Iran: Application of Complex Network Analysis
Stock price and its changes which reflect the individuals’ investment decisions in economic environment are the most important factors in evaluating the economic value of a company in stock market. Stock price changes are not independent of each other. Therefore, study of the correlation between stock price changes provides a better understanding of market performance for investors. Analysis of...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کامل